Liquefied Natural Gas: A Marine Fuel for Canada’s West Coast is a condensed version of the Transport Canada report, TP 15248 E, Canadian Marine Liquefied Natural Gas (LNG) Supply Chain Project, Phase 1 – West Coast . The original detailed report was prepared in 2013 by STX Canada Marine for joint industry project participants and the Transportation Development Centre of Transport Canada.
This condensed report summarizes project results related to identifying and addressing barriers to the establishment of a LNG marine fuel supply chain on Canada’s West Coast. The project contributed to the development of a thorough understanding of key issues and how to design approaches that will encourage the use of LNG as a marine fuel in Canada.
Key Project Findings
All of the technologies needed to use LNG as a marine fuel are proven and commercially available, including dual fuel and pure gas engines in power ranges that meet the needs of many types of coastal and deep sea vessels. Development of engine technologies and onboard fuel storage systems is also continuing.
In marine applications, LNG provides significant benefits in terms of reducing emissions from ship engine exhaust. When compared with modern engines using even “clean” fuel oils, LNG can lower ship exhaust emissions of sulphur oxides (SOx) by over 90%; of nitrogen oxides (NOx) by up to 35% for diesel- cycle engines and up to 85% for Otto cycle engines; of particulate matter (PM) by over 85%; of carbon dioxide (CO2) by up to 29%; and of greenhouse gases (GHGs) by up to 19% on a CO2-equivalent basis. The use of natural gas as a marine fuel allows compliance with all current and known future emission requirements.
“Methane slip” is associated with natural gas marine engines and refers to the release of unburned methane from the combustion process. As methane is a potent GHG, such slip can significantly reduce the emissions advantage of using LNG. Different engine technologies vary considerably with respect to levels of methane slip.
NT3